Δευτέρα 28 Μαρτίου 2016

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ

Η Κβαντική Μηχανική (ή Κβαντική Φυσική ή Κβαντομηχανική), είναι αξιωματικά θεμελιωμένη θεωρία της Φυσικής, που αναπτύχθηκε με σκοπό την ερμηνεία φαινομένων που η νευτώνεια μηχανική αδυνατούσε να περιγράψει. Η κβαντομηχανική περιγράφει τη συμπεριφορά της ύλης στο μοριακό, ατομικό και υποατομικό επίπεδο. Ο όρος κβάντο (quantum, μικρή ποσότητα - προέρχεται από τη λέξη quantus που στα Λατινικά σημαίνει πόσο) αναφέρεται σε διακριτές μονάδες που χαρακτηρίζουν συγκεκριμένες φυσικές ποσότητες, όπως η ενέργεια ενός ατόμου ύλης σε κατάσταση ηρεμίας.
Η κβαντομηχανική είναι μια θεωρία της φυσικής μηχανικής. Θεωρείται πιο θεμελιώδης από την κλασική μηχανική, καθώς εξηγεί φαινόμενα που η κλασική μηχανική και η κλασική ηλεκτροδυναμική αδυνατούν να αναλύσουν, όπως:
  1. Την κβάντωση (διακριτοποίηση) πολλών φυσικών ποσοτήτων, όπως για παράδειγμα την κίνηση του ηλεκτρονίου μόνο σε συγκεκριμένες ενεργειακές τροχιές σε ένα άτομο.
  2. Τον κυματοσωματιδιακό δυϊσμό, δηλαδή την εκδήλωση, σε ορισμένες περιπτώσεις, κυματικής συμπεριφοράς από σωματίδια ύλης, κυρίως ηλεκτρόνια.
  3. Τον κβαντικό εναγκαλισμό, που σχετίζεται με την περιγραφή της κατάστασης ενός συστήματος από επαλληλία καταστάσεων.
  4. Το φαινόμενο σήραγγας, χάρη στο οποίο σωματίδια μπορούν να υπερπηδήσουν φράγματα δυναμικού και να βρεθούν σε περιοχές του χώρου απαγορευμένες από την κλασική μηχανική.
Θεωρείται επίσης θεμελιώδης επειδή σε συγκεκριμένες περιπτώσεις, για παράδειγμα όταν μελετώνται μακροσκοπικά σώματα, οι νόμοι που περιγράφουν τα κβαντικά φαινόμενα συγκλίνουν με τους νόμους της κλασικής μηχανικής, κι έτσι η δεύτερη θεωρείται οριακή περίπτωση της πρώτης. Η περίπτωση αυτή είναι γνωστή ως αρχή της αντιστοιχίας, που αρχικά διατύπωσε ο Νιλς Μπορ.
Η κβαντομηχανική σε έναν αιώνα πειραματισμού δεν έχει διαψευστεί. Κρύβεται πίσω από πολλά φυσικά φαινόμενα και ιδιαιτέρως τα χημικά φαινόμενα καθώς και τη φυσική της στερεάς κατάστασης.
Επίλυση της εξίσωσης του Σρέντιγκερ για το άτομο του υδρογόνου σε διαφορετικά επίπεδα ενέργειας. Οι φωτεινές περιοχές αντιπροσωπεύουν μεγαλύτερη πιθανότητα εύρεσης ενός ηλεκτρονίου (ηλεκτρονιακές πιθανοτικές στοιβάδες σε διαφορετικά επίπεδα ενέργειας).

Ιστορία

Η κβαντομηχανική δεν είναι μια θεωρία που προέκυψε από τη φαντασία ενός φυσικού. Οι περισσότεροι φυσικοί την αποδέχτηκαν κάτω από την πίεση των πειραματικών δεδομένων, μια και ερχόταν σε σύγκρουση με τις καθιερωμένες τους αντιλήψεις. Μερικοί μάλιστα, όπως ο Αϊνστάιν, συνέχισαν να την αμφισβητούν μέχρι το τέλος της ζωής τους.
  • Το 1900 ο Μαξ Πλανκ (Max Planck) μελετά την ακτινοβολία του μέλανος (μαύρου) σώματος. Προσπαθεί να βελτιώσει μια σχέση στην οποία είχε καταλήξει πριν από αυτόν ο Wien που αφορά την κατανομή της ακτινοβολούμενης ενέργειας στις διάφορες συχνότητες. Το πετυχαίνει χρησιμοποιώντας την υπόθεση πως το φως εκπέμπεται από ένα μέλαν σώμα μόνο σε συγκεκριμένα ποσά ενέργειας(κβάντα) ανάλογα με τη συχνότητά του, δηλαδή ακέραια πολλαπλάσια της ποσότητας Ε = hν όπου ν η συχνότητα και h μια σταθερά (που ονομάστηκε σταθερά του Πλανκ).
  • Το 1905 ο Αϊνστάιν σε μια προσπάθεια ερμηνείας του φωτοηλεκτρικού φαινομένου γενικεύει την ιδέα του Πλανκ προτείνοντας ότι η ηλεκτρομαγνητική ακτινοβολία συνίσταται από κβάντα. Κάθε κβάντο περιέχει την ελάχιστη δυνατή ενέργεια που μπορεί να υπάρξει για κάθε συγκεκριμένο μήκος κύματος. Το 1906 χρησιμοποιεί την έννοια της κβάντωσης για να ερμηνεύσει την ειδική θερμότητα των στερεών σε χαμηλές θερμοκρασίες.
  • Το 1911 ο Έρνεστ Ράδερφορντ (Ernest Rutherford) προτείνει το πλανητικό μοντέλο για το άτομο, σύμφωνα με το οποίο τα ηλεκτρόνια κινούνται γύρω από ένα πυρήνα που συγκεντρώνει το μεγαλύτερο μέρος της μάζας του ατόμου. Το μοντέλο αυτό ήταν ασυμβίβαστο με την κλασική φυσική διότι σύμφωνα με αυτήν τα ηλεκτρόνια θα έπρεπε κατά την κίνησή τους να εκπέμπουν ακτινοβολία με αποτέλεσμα να χάνουν ενέργεια και έτσι τελικά να πέφτουν πάνω στον πυρήνα. Τα άτομα επομένως θα ήταν ασταθή.
  • Το 1913 ο Μπορ (Niels Bohr) προτείνει ότι η στροφορμή των ηλεκτρονίων που κινούνται σε τροχιά γύρω από τον πυρήνα του ατόμου μπορεί να είναι μόνο ακέραιο πολλαπλάσιο της ποσότητας h/2π, δηλαδή εμφανίζεται και αυτή σε κβάντα. Από αυτό προέκυπτε ότι οι τροχιές πάνω στις οποίες μπορούσαν να βρίσκονται τα ηλεκτρόνια ήταν συγκεκριμένες και επομένως κι η ενέργειά τους το ίδιο. Ένα άτομο εκπέμπει ακτινοβολία μόνο όταν ένα ηλεκτρόνιο μεταπηδήσει από μια τροχιά σε άλλη, και η διαφορά τους σε ενέργεια είναι E2 – E1 = hν. Έτσι προέκυψαν οι πρώτοι κανόνες που προσπαθούν να ερμηνεύσουν το φάσμα της ακτινοβολίας που εκπέμπουν ή απορροφούν τα διάφορα υλικά.
  • Στην περίοδο 1914 – 1919 οι Φρανκ και Χερτζ επιβεβαιώνουν πειραματικά την ύπαρξη σταθερών ενεργειακών καταστάσεων, μετρώντας την ενέργεια που χάνουν ηλεκτρόνια που έχουν επιταχυνθεί όταν συγκρούονται με άτομα.
  • Ο Ζόμερφιλντ (Sommerfield) επεξεργάζεται περαιτέρω τη θεωρία του Μπορ και το αποτέλεσμα είναι αυτό που ονομάζεται παλιά κβαντική θεωρία. Αν και πολλά πειραματικά δεδομένα εξηγούνται από αυτήν, υπάρχουν και άλλα που παραμένουν ανεξήγητα, όπως το φαινόμενο Ζέιμαν (Zeeman).
  • Το 1923 ο Κόμπτον (Arthur Compton) δείχνει ότι οι αχτίνες Χ παρουσιάζουν χαρακτήρα κυματικό και σωματιδιακό (φαινόμενο Κόμπτον). Ο Λουί ντε Μπρολί(Louis De Broglie) προτείνει ότι και τα υλικά σωματίδια συμπεριφέρονται μερικές φορές σαν κύματα. Αυτό γίνεται γνωστό ως πρόβλημα του κυματοσωματιδιακού δυϊσμού, ενώ τα κύματα ύλης που προβλέπονται από αυτόν το συλλογισμό καθιερώθηκε να αποκαλούνται κύματα ντε Μπρολί.
  • Ο όρος «κβαντική φυσική» χρησιμοποιήθηκε για πρώτη φορά στο έργο «Planck’s Universe in Light of Modern Physics» του Johnston.
Εκείνη την εποχή η κβαντική θεωρία του Πλανκ δεν ήταν πραγματικά θεωρία αλλά κάτι που προκαλούσε αμηχανία.
— Βέρνερ Χάιζενμπεργκ, Η απαρχή της κβαντομηχανικής στο Γκέτινγκεν[1]
Μέχρι την εποχή αυτή η κβαντική θεωρία δεν είχε κάποια γενική δομή και μαθηματικό υπόβαθρο. Ήταν ένα σύνολο από υποθέσεις, εμπειρικούς κανόνες, μεθόδους υπολογισμού και θεωρήματα και όχι μια συνεκτική θεωρία. Δεν υπήρχε σαφής αιτιολόγηση όλων αυτών και, έτσι, πολλοί θεωρούν αυτούς τους πρώτους νόμους φαινομενολογικούς. Η κατάσταση άλλαξε από δύο ανεξάρτητες προσπάθειες, του Χάιζενμπεργκ (Werner Heisenberg) και του Σρέντινγκερ (Erwin Schrodinger).
  • Ο όρος «Κβαντική Μηχανική» εμφανίζεται για πρώτη φορά σε μελέτη του Μπορν το 1924, με τίτλο "Περί της κβαντομηχανικής" (Zur Quantenmechanik).[1]
  • Το 1925 ο Χάιζενμπεργκ αναπτύσσει μια μαθηματική δομή για την κβαντική θεωρία, βασισμένη στα μαθηματικά των (πινάκων). Ο ίδιος, ωστόσο, αγνοεί αυτό το τμήμα των Μαθηματικών και αναγκάζεται να εφεύρει τον φορμαλισμό από την αρχή. Ο Χάιζενμπεργκ βασίζεται σε μια ιδέα της σχολής του Γκέτιγκεν, σύμφωνα με την οποία τα μεγέθη εκείνα που δεν μπορούν να παρατηρηθούν άμεσα πρέπει να απορριφθούν και να ασχολείται κανείς μόνο με παρατηρήσιμα μεγέθη.
  • Το 1926 ο Σρέντινγκερ, ανεξάρτητα από τον Χάιζενμπεργκ και την σχολή του Γκέτιγκεν, προτείνει μια εξίσωση που περιγράφει τα κύματα ντε Μπρολί. Δεχόμενος ότι υπάρχει μια συνάρτηση κύματος Ψ(x,y,z,t) που αντιστοιχεί με ένα κινούμενο σωματίδιο, αναζητά την γενική διαφορική εξίσωση η οποία θα ικανοποιείται από την Ψ. Έτσι καταλήγει στην περίφημη εξίσωση Σρέντινγκερ. Η εξίσωση αυτή αποτέλεσε απαραίτητο εργαλείο για την μελέτη της κίνησης των σωματιδίων, ιδιαίτερα όταν αυτά βρίσκονται μέσα σε πεδίο δυνάμεων.
  • Την ίδια περίοδο πέφτει στα χέρια του Ντιράκ (Paul Dirac) ένα αντίγραφο της εργασίας του Χάιζενμπεργκ. Ο Ντιράκ είχε αποφοιτήσει ως μηχανικός από το πανεπιστήμιο του Μπρίστολ και στη συνέχεια πήρε πτυχίο Μαθηματικών. Έτσι, ήταν ήδη εξοικειωμένος με την άλγεβρα των πινάκων. Επεξεργάζεται, λοιπόν, την εργασία και στέλνει πίσω στον Χάιζενμπεργκ την δική του προσέγγιση.
  • Το 1927 οι Ντέιβισον (Davisson) και Γκέρμερ (Germer) επιβεβαιώνουν πειραματικά την άποψη του ντε Μπρολί για την επέκταση του κυματοσωματιδιακού δυϊσμού στα σωματίδια ύλης, με την σκέδαση ηλεκτρονίων πάνω σε ένα κρύσταλλο. Το αποτέλεσμα της σκέδασης υποδεικνύει μια καθαρά κυματική συμπεριφορά.
  • Παράλληλα, οι Ντάργουιν και Πάουλι, ανεξάρτητα ο ένας από τον άλλο, εισάγουν στον φορμαλισμό το σπιν του ηλεκτρονίου.
  • Ο Μπορν συσχετίζει τις κυματοσυναρτήσεις που προκύπτουν από την εξίσωση Σρέντινγκερ με την έννοια της πιθανότητας. Συγκεκριμένα, ερμηνεύει το τετράγωνο του μέτρου της κυματοσυνάρτησης |Ψ(x,y,z,t)|2 ως την πυκνότητα πιθανότητας να βρεθεί το εξεταζόμενο σύστημα στις συντεταγμένες x,y,z,t. Η εξέλιξη αυτή θεωρείται ιδιαίτερα κρίσιμη, καθώς τα κβαντικά κύματα νοούνται πλέον σαν κύματα πιθανότητας και όχι ύλης, κάτι που λύνει και τις αντιφάσεις που δημιούργησε η παλιά κβαντική θεωρία.
  • Το 1928 ο Ντιράκ διατυπώνει την σχετικιστική του εξίσωση για το ηλεκτρόνιο και άλλα παρόμοια με αυτό σωματίδια (φερμιόνια), εξηγώντας ταυτόχρονα το σπιν και προβλέποντας την ύπαρξη του αντιηλεκτρονίου (ή ποζιτρονίου) και των αντισωματιδίων γενικότερα.
  • Το 1932 ο Άντερσον ανακαλύπτει το ποζιτρόνιο μελετώντας κοσμικές ακτίνες.
Στο σημείο αυτό η κβαντομηχανική δεν τελειώνει, αλλά τίθενται οι βάσεις για την εκρηκτική εξέλιξη της επιστήμης και της τεχνολογίας που γνώρισε η ανθρωπότητα. Αναπτύσσεται η πυρηνική φυσική και η μελέτη των στοιχειωδών σωματιδίων, η κβαντική χημεία, εμβαθύνεται η μελέτη των ημιαγωγών και εφευρίσκονται τατρανζίστορ, οδηγώντας στην «ηλεκτρονική επανάσταση», ερμηνεύονται οι εσωτερικές διαδικασίες των άστρων, εφευρίσκονται τα λέιζερ, ανακαλύπτεται ηυπεραγωγιμότητα κλπ. Σαν άμεση εξέλιξη της ίδιας της θεωρίας μπορούμε, πάντως, να ξεχωρίσουμε τα ακόλουθα:
  • Από το 1927 γίνονταν προσπάθειες να εφαρμοστεί η κβαντομηχανική σε πεδία αντί σε μεμονωμένα σωματίδια. Το αποτέλεσμα αυτών των προσπαθειών είναι οι λεγόμενες κβαντικές θεωρίες πεδίου. Μερικοί από τους πρώτους ερευνητές αυτού του τομέα είναι ο Ντιράκ, ο Παουλί, ο Weisskopf και ο Jordan. Το αποκορύφωμα της έρευνας αυτής είναι η κβαντική ηλεκτροδυναμική, που αναπτύχθηκε από τους Φάινμαν, Dyson, Schwinger και Tomonaga στα τέλη της δεκαετίας του 1940. Η κβαντική ηλεκτροδυναμική περιγράφει τις αλληλεπιδράσεις των ηλεκτρικά φορτισμένων σωματιδίων και τη φύση του ηλεκτρομαγνητικού πεδίου γενικότερα, ερμηνεύοντας τις ηλεκτρικές αλληλεπιδράσεις με ανταλλαγή φωτονίων. Χρησίμευσε ως πρότυπο για τις κβαντικές θεωρίες πεδίου που ακολούθησαν. Το επόμενο μεγάλο βήμα ήταν μια θεωρία που ενοποιεί τις ηλεκτρομαγνητικές δυνάμεις και την ασθενή πυρηνική δύναμη σε μια μοναδική δύναμη, την ηλεκτρασθενή. Στη συνέχεια αναπτύσσεται μια θεωρία για την ισχυρή πυρηνική δύναμη, η κβαντική χρωμοδυναμική, στις αρχές της δεκαετίας του 1960. Προσπάθειες για μια γενική θεωρία, που να περιλαμβάνει όλες τις θεμελιώδεις δυνάμεις (ηλεκτρομαγνητική, ασθενής πυρηνική, ισχυρή πυρηνική και βαρύτητα) δεν έχουν δώσει ακόμα ικανοποιητικό αποτέλεσμα, έχουν όμως δημιουργήσει νέους τομείς στην θεωρητική σκέψη όπως η θεωρία των υπερχορδών.
  • Το 1935, οι Αϊνστάιν, Ποντόλσκι (Podolsky) και Ρόζεν (Rosen), δημοσιεύουν το περίφημο παράδοξο που φέρει τα αρχικά των ονομάτων τους, EPR. Το ερώτημα με το οποίο καταπιάνεται το άρθρο τους είναι το κατά πόσον η κβαντομηχανική είναι ή όχι μια πλήρης θεωρία. Η συζήτηση αυτή παίρνει μεγάλες διαστάσεις και αποκαλύπτει νέες πτυχές της κβαντομηχανικής, όπως η μη τοπικότητα και η κβαντική πληροφορία. Οι τεχνολογικές εφαρμογές αυτού του νέου πεδίου, όπως ηκβαντική τηλεμεταφορά, η κβαντική κρυπτογραφία και οι κβαντικοί υπολογιστές βρίσκονται σήμερα υπό εξέλιξη. Ως αποτέλεσμα αυτού του προβληματισμού προέκυψε και η ερμηνεία των πολλών κόσμων του Έβερετ (Everett), το 1956.

Περιγραφή Θεωρίας

Υπάρχουν διάφορες μαθηματικές θεμελιώσεις περί της κβαντικής μηχανικής. Μια από τις πιο παλιές και κοινά χρησιμοποιούμενες είναι αυτή της θεωρίας της μετατροπής θεμελιωμένη από τον Πωλ Ντιράκ, η οποία ενώνει και γενικεύει δύο προηγούμενες θεμελιώσεις, εκείνη της θεωρίας των πινάκων ή μητρών του Βέρνερ Χάϊζενμπεργκ και της κυματομηχανικής θεωρίας του Έρβιν Σρέντινγκερ. Σε αυτή την θεωρία η στιγμιαία κατάσταση ενός κβαντικού συστήματος αποδίδεται με τη μορφή μετρήσεων των πιθανοτήτων των "παρατηρήσιμων" ιδιοτήτων του ( παρατηρήσιμες ιδιότητες είναι η ενέργεια, η θέση, η ορμή και η γωνιακή ορμή). Παρατηρήσιμες μεταβλητές μπορούν να είναι είτε συνεχείς (π.χ. η θέση ενός σωματιδίου), είτε διάκριτες (π.χ. η ενέργεια ενός ηλεκτρονίου που έλκεται από ένα άτομο υδρογόνου).

Μαθηματική Θεμελίωση

Η κβαντική μηχανική θεμελιώνεται μαθηματικά σύμφωνα με τα παρακάτω:
1. Για κάθε φυσικό σύστημα υπάρχει μία τετραγωνικά ολοκληρώσιμη συνάρτηση Ψ, που ανήκει σε ένα κατάλληλο χώρο Hilbert και ονομάζεται κυματοσυνάρτηση, και περιέχει όλες τις πληροφορίες που μπορούν να εξαχθούν για το σύστημα.
2. Σε κάθε φυσικό μέγεθος αντιστοιχεί ένας κατάλληλος ερμιτιανός τελεστής, του οποίου οι ιδιοτιμές είναι τα μοναδικά δυνατά εξαγόμενα μιας μέτρησης.
3. Η εξέλιξη της κυματοσυνάρτησης καθορίζεται από την εξίσωση Σρέντινγκερ (Schrödinger).
4. Η ερμηνεία της κυματοσυνάρτησης είναι, σύμφωνα με την Σχολή της Κοπεγχάγης (στατιστική ερμηνεία της Κυματοσυνάρτησης), ότι το τετράγωνο του μέτρου της αποτελεί την πυκνότητα πιθανότητας (ή πιθανότητα ανά μονάδα μήκους).
5. Η μέτρηση ενός μεγέθους και η εύρεση μίας ιδιοτιμής του αντίστοιχου τελεστή αλλάζει το σύστημα έτσι ώστε αμέσως μετά τη μέτρηση να περιγράφεται από το αντίστοιχο ιδιοδιάνυσμα της ιδιοτιμής που μετρήθηκε (αρχή του φιλτραρίσματος).

Τομείς

Οι εξής τομείς κατηγοριοποιούνται στην κβαντική μηχανική:

πηγή:https://el.wikipedia.org/wiki/%CE%9A%CE%B2%CE%B1%CE%BD%CF%84%CE%B9%CE%BA%CE%AE_%CE%BC%CE%B7%CF%87%CE%B1%CE%BD%CE%B9%CE%BA%CE%AE

Δευτέρα 29 Φεβρουαρίου 2016

Η ΜΕΓΑΛΗ ΕΚΡΗΞΗ

Η Μεγάλη Έκρηξη (αγγ: Big Bang, Μπιγκ Μπανγκ) είναι κοσμολογική θεωρία σύμφωνα με την οποία το Σύμπανδημιουργήθηκε από μια υπερβολικά πυκνή και θερμή κατάσταση, πριν από περίπου 13,8 δισεκατομμύρια χρόνια. Η θεωρία αυτή για τη δημιουργία του Σύμπαντος είναι η πιο διαδεδομένη σήμερα στην επιστημονική κοινότητα. Ο όρος Big Bangχρησιμοποιήθηκε για πρώτη φορά από τον Φρεντ Χόυλ σε ραδιοφωνική εκπομπή του BBC, το κείμενο της οποίας δημοσιεύθηκε το 1950. Ο Χόυλ δεν χρησιμοποίησε τον όρο για να περιγράψει μία θεωρία, αλλά για να ειρωνευθεί τη νέα ιδέα. Παρόλα αυτά ο όρος επικράτησε, αποβάλλοντας το ειρωνικό του περιεχόμενο.

Απεικόνιση της εξέλιξης του Σύμπαντος.

Θεωρία

Εισηγητής της θεωρίας υπήρξε ο Βέλγος Αββάς και αστρονόμος Ζωρζ Λεμαίτρ. Ύστερα από τις διαπιστώσεις ότι:
Με βάση αυτές τις δύο παρατηρήσεις πρότεινε ως αρχή του Σύμπαντος το «πρωταρχικό άτομο», όπου ολόκληρη η μάζα του Σύμπαντος είναι συγκεντρωμένη σε ένα και μοναδικό σημείο και ο χωρόχρονος δεν έχει ακόμα δημιουργηθεί. Το «άτομο» αυτό κάποτε καιρώ εξερράγη και από την ύλη που εκτοξεύθηκε δημιουργήθηκαν οιγαλαξίες και οι αστέρες.
Το 1948 ο Τζορτζ Γκάμοφ μελετώντας θεωρητικά την υπερβολικά πυκνή κατάσταση του αρχικού ατόμου συμπέρανε ότι:
  • Το ήλιο και τα άλλα ελαφρά χημικά στοιχεία πρέπει να δημιουργήθηκαν εντός τεσσάρων δευτερολέπτων
  • Μια διάχυτη ισότροπη ακτινοβολία, απομεινάρι της μεγάλης έκρηξης, θα πρέπει να είναι ακόμα και σήμερα ανιχνεύσιμη.

Διαστολή του Σύμπαντος

Το γνωστό και ως «φαινόμενο της μετατόπισης προς το ερυθρό» (redshift), η διαπίστωση δηλαδή ότι οι γαλαξίες απομακρύνονται μεταξύ τους, απόδειξη της κοινής εκκίνησης στο απώτατο παρελθόν.

Ακτινοβολία μικροκυμάτων

Το 1965 οι φυσικοί Άρνο Πενζίας και Ρόμπερτ Γουίλσον παρατήρησαν μια μικρού μήκους (μικροκυματική) διάχυτη ισότροπη ηλεκτρομαγνητική ακτινοβολία, που ερχόταν δηλαδή ομοιόμορφα απ' όλες τις διευθύνσεις, θερμοκρασίας 3Κ (–270 C), όπως αυτή που είχε προβλέψει ο Τζορτζ Γκάμοφ 17 χρόνια νωρίτερα.

Κατανομή γαλαξιών

Από την αρχή της διατύπωσης της θεωρίας της Μεγάλης Εκρήξεως διαπιστώθηκε ότι η πυκνότητα των γαλαξιών θα πρέπει να μειώνεται αυξανόμενης της ηλικίας του Σύμπαντος. Το φαινόμενο απέδειξε ο αστροφυσικός σερ Μάρτιν Ράιλ το 1974.

Αναπάντητα ερωτήματα

Η θεωρία της Μεγάλης Έκρηξης, παρά τις πειραματικές της επιβεβαιώσεις αφήνει και κάποια φυσικά και φιλοσοφικά ερωτήματα αναπάντητα,τα βασικότερα των οποίων είναι:
  1. Προβλέπει ένα μικρότερο Σύμπαν από αυτό που υπάρχει σήμερα.
  2. Δεν εξηγεί την Κοσμολογική Αρχή, αλλά τη δέχεται αξιωματικά, πράγμα ασυμβίβαστο με τη μαθηματική ανάλυση.
  3. Τι υπήρχε πριν; Πώς από το τίποτα προήλθαν τα πάντα;
  4. Γιατί δημιουργήθηκαν οι συγκεκριμένοι φυσικοί νόμοι και όχι κάποιο άλλοι; Γιατί για παράδειγμα ο χωροχρόνος είναι τετραδιάστατος;
Απάντηση σε αυτά τα ερωτήματα προσπάθησαν να δώσουν κάποιες άλλες θεωρίες.
Η θεωρία της Μεγάλης Έκρηξης έχει και πολλούς πολέμιους, εκτός από υποστηρικτές, οι οποίοι στηρίζουν διαφορετικές κοσμολογικές θεωρίες, όπως η Κοσμολογία της συνεχούς δημιουργίας και η Θεωρία Λίντε.
Τον Φεβρουάριο του 2016 ανακοινώθηκε από τους επιστήμονες η επιτυχής παρατήρηση των βαρυτικών κυμάτων, μια εξέλιξη η οποία χαιρετίστηκε ως η μεγαλύτερη ανακάλυψη του αιώνα καθώς μέσω της παρατήρησης τους μπορεί να μελετηθεί απευθείας η στιγμή της Μεγάλης Έκρηξης, κάτι που τα συμβατικά τηλεσκόπια τα οποία συλλέγουν ακτινοβολία φωτός αδυνατούσαν καθώς μπορούν να παρατηρήσουν μόνο έως 400.000 έτη μετά την Έκρηξη λόγω της μη επαρκούς διασποράς του φωτός.

πηγή:https://el.wikipedia.org/wiki/%CE%9C%CE%B5%CE%B3%CE%AC%CE%BB%CE%B7_%CE%88%CE%BA%CF%81%CE%B7%CE%BE%CE%B7

ΣΕΛΗΝΗ

Η Σελήνη ή Φεγγάρι είναι ο μοναδικός φυσικός δορυφόρος της Γης και ο πέμπτος μεγαλύτερος φυσικός δορυφόρος του ηλιακού συστήματος. Πήρε το όνομά του από την Σελήνη, αρχαιοελληνική θεά του δορυφόρου αυτού. Λέγεται επίσης «Φεγγάρι» στη δημοτική γλώσσα, λιγότερο επίσημα ή ποιητικά. Αποτελείται από στερεά υλικά με σύσταση παρόμοια με αυτή της Γης. Είναι το φωτεινότερο σώμα στηνουράνια σφαίρα μετά τον Ήλιο, επειδή είναι και το κοντινότερο στη Γη ουράνιο σώμα. Εξαιτίας αυτής της εγγύτητας, η Σελήνη έχει ισχυρή βαρυτική επίδραση στη Γη (παλιρροϊκή αλληλεπίδραση), προκαλώντας φαινόμενα όπως οι παλίρροιες, αλλά και επηρεάζοντας τον άξονα περιστροφής της.

Αστρονομικά δεδομένα

Η μέση απόσταση Γης - Σελήνης είναι 384.403 χιλιόμετρα (παρατηρείται οτι αυτή η απόσταση αυξάνεται κατά περίπου 0.32 εκατοστά το μήνα και αυτό συμβαίνει λόγω των παλιρροϊκών δυνάμεων). Η διάμετρος της σελήνης είναι 3.476 χιλιόμετρα (περίπου το 1/4 της γήινης). Η βαρύτητα στην επιφάνεια της Σελήνης είναι σε ένταση το 1/6 περίπου αυτής της Γης. Περιστρέφεται στον ελαφρώς κεκλιμένο άξονά της σε 27 ημέρες 7 ώρες και 43 λεπτά, ακριβώς στον ίδιο χρόνο που διαρκεί η τροχιακή περιφορά της γύρω από τη Γη. Αυτός ο συντονισμός είναι και ο λόγος που από τη γη βλέπουμε πάντα την ίδια όψη της, κάτι που οφείλεται στην βαρυτική έλξη από τη Γη. Η Γη και η σελήνη βαρυτικά είναι ένα ενιαίο σώμα με κοινό βαρυτικό κέντρο.
Οι εκλείψεις Ηλίου προκαλούνται από τη Σελήνη, όταν αυτή περνά φαινομενικά μπροστά από το ήλιο, σκιάζοντας μέρος της Γης, αντίθετα με τις εκλείψεις Σελήνης που προκαλούνται ομοίως από τον πλανήτη Γη.

Σχηματισμός

Αρκετοί μηχανισμοί έχουν προταθεί για το σχηματισμό της Σελήνης 4,527 ± 0,010 δισεκατομμύρια χρόνια πριν, περίπου 30-50 εκατομμύρια χρόνια μετά τον σχηματισμό του ηλιακού συστήματος. Σε αυτούς τους μηχανισμούς περιλαμβάνονται: η αποκοπή της Σελήνης από το φλοιό της Γης από φυγόκεντρες δυνάμεις, η οποία θα απαιτούσε υπερβολικά μεγάλη αρχική ταχύτητα περιστροφής της Γης, η βαρυτική σύλληψη μίας προσχηματισμένης Σελήνης, η οποία θα απαιτούσε ανέφικτα εκτεταμένη ατμόσφαιρα της Γης να διαχέει την ενέργεια της στο σημείο που διέρχεται η Σελήνη, και τη συν-δημιουργία της Γης και της Σελήνης από κοινού στον αρχέγονο δίσκο προσαύξησης, το οποίο δεν εξηγεί την έλλειψη του μεταλλικού σιδήρου στο φεγγάρι. Αυτές οι υποθέσεις, επίσης, δεν μπορούν να εξηγήσουν την υψηλή στροφορμή στο σύστημα Γης-Σελήνης.
Ο πιο πιθανός μηχανισμός είναι η σύγκρουση ενός πλανήτη με τη νεαρή Γη. Μετά τη σύγκρουση τα σωματιδία που εκτινάχθηκαν στο διάστημα τέθηκαν σε τροχιά γύρω από τη Γη και στο τέλος σχημάτισαν τη Σελήνη. Οι γιγάντιες συγκρούσεις πιστεύεται ότι ήταν κοινές στις αρχές του Ηλιακού Συστήματος. Προσομοιώσεις σε ηλεκτρονικό υπολογιστή που αναπαράγουν μία τεράστια σύγκρουση είναι συνεπείς με τις μετρήσεις της στροφορμής του συστήματος Γης-Σελήνης, και το μικρό μέγεθος του πυρήνα της Σελήνης. Δείχνουν επίσης ότι η περισσότερη από τη Σελήνη προήλθε από σύγκρουση, όχι από την πρωτο-Γη. Ωστόσο, οι μετεωρίτες δείχνουν ότι και άλλα εσωτερικά σώματα του ηλιακού συστημάτος, όπως ο Άρης και η Εστία έχουν πολύ διαφορετικές συγκεντρώσεις όσον αφορά τα ισότοπα του οξυγόνου και του βολφραμίου απ ότι με τη Γη, ενώ η Γη και η Σελήνη έχουν σχεδόν ταυτόσημες ισοτοπικές συνθέσεις. Μετά την ανάμειξη του εξατμιθέντος υλικού κατά τη διαμόρφωσης της Γης και της Σελήνης θα μπορούσε να εξισωθούν οι ισοτοπικές συνθέσεις τους, αν και αυτό συζητείται.
Ενώ υπάρχει η θεωρία ότι η νεαρή Σελήνη μεγάλωσε γρήγορα προσροφόντας τα κομμάτια που τέθηκαν σε τροχιά, μια δεύτερη θεωρία υποστηρίζει ότι αρχικά δημιουργήθηκαν δύο φεγγάρια τα οποία στη συνέχεια συγχωνεύτηκαν σε μια αργή σύγκρουση, σχηματίζοντας την σημερινή Σελήνη. Η θεωρία αυτή εξηγεί γιατί ο φλοιός της Σελήνης είναι περίπου 50 χιλιόμετρα πιο παχύς στην αθεάτη πλευρά της από ότι αυτή που φαίνεται από τη Γη. Υπολογιστικά μοντέλα δείχνουν ότι το μικρότερο φεγγάρι είχε περίπου το ένα τριακοστό της μάζας της Σελήνης και διάμετρο περίπου 1.000 χιλιόμετρα. Καθώς οι παλιρροϊκές δυνάμεις της Γης θα αύξαναν την ακτίνα της τροχιάς των δύο φεγγαριών, οι ισορροποίες μεταξύ τους άλλαξαν, με αποτέλεσμα να συγκρουστούν με μικρή ταχύτητα και ουσιαστικά το μικρό φεγγάρι να απλωθεί γύρω από το μεγαλύτερο. Άλλες θεωρίες για να εξηγήσουν το φαινόμενο είναι μια ασύμετρη σύγκρουση που δημιούργησε το μεγάλο κρατήρα στο νότιο πόλο της Σελήνης και η δράση των παλιρροϊκών δυνάμεων.

Εξερεύνηση της σελήνης

Η αθέατη πλευρά της Σελήνης.
Το 1969, οι Νηλ Άρμστρονγκ (Neil Armstrong) και Μπαζ Όλντριν (Buzz Aldrin) κατά την αποστολή Απόλλων 11του διαστημικού προγράμματος «Απόλλων» (Apollo) έγιναν οι πρώτοι άνθρωποι που πάτησαν στην επιφάνεια της Σελήνης. Ακολούθησαν άλλοι δέκα αστροναύτες κατά τις αποστολές Απόλλων 12Απόλλων 14Απόλλων 15Απόλλων 16 και τελευταία τηνΑπόλλων 17 το 1972. Η επιστροφή του ανθρώπου στη Σελήνη προβλέπεται περίπου το 2020, με τοΠρόγραμμα Ωρίων της NASA, ενώ υπάρχουν σχέδια για επανδρωμένη αποστολή και από τους Κινέζους.
Στις 13 Νοεμβρίου 2009 η NASA ανακοίνωσε ότι η αποστολή LCROSS, με μια ελεγχόμενη συντριβή συσκευής στον νότιο πόλο της σελήνης κατάφερε να ανακαλύψει σημαντικές ποσότητες νερού.

Κινήσεις

Οι βασικές κινήσεις της Σελήνης είναι δύο. Κινείται γύρω από τη Γη σε ελλειπτική τροχιά και συμπληρώνει μια περιστροφή γύρω από το κέντρο της σε 29,53 ημέρες. Ο χρόνος αυτός ονομάζεται συνοδικός μήνας. Επίσης περιστρέφεται γύρω από τον άξονά της και συμπληρώνει μια περιστροφή σε 27,3 ημέρες. Ο χρόνος αυτός ονομάζεται αστρικός μήνας. Το αποτέλεσμα των δύο αυτών κινήσεων είναι η Σελήνη να δείχνει σε μας πάντοτε την ίδια πλευρά. Το φαινόμενο αυτό ονομάζεται σύγχρονη περιστροφή της Σελήνης και οφείλεται στην εξίσωση των χρόνων της περιφοράς της γύρω από τη Γη και της περιστροφής γύρω από τον άξονά της.

Εκτός από τις δύο αυτές κινήσεις, παρατηρούνται τα φαινόμενα των Λικνίσεων της Σελήνης (Lunar libration) όπου εμφανίζουν τη Σελήνη σαν να πραγματοποιεί μια παλινδρομική κίνηση. Οι λικνίσεις της Σελήνης χωρίζονται στις γεωμετρικές λικνίσεις και στη φυσική λίκνιση. Οι γεωμετρικές λικνίσεις χωρίζονται σε τρεις επιμέρους λικνίσεις: Την κατά μήκος λίκνιση που οφείλεται στην ελαφρώς ελλειπτική τροχιά της Σελήνης, την κατά πλάτος λίκνιση που οφείλεται σε μια μικρή κλίση μεταξύ του άξονα περιστροφής της και του επιπέδου τής τροχιάς της Γης και την ημερήσια λίκνιση που οφείλεται στην μετακίνηση της θέσης του παρατηρητή πάνω στην επιφάνεια της Γης, λόγω της περιστροφής της Γης. Η φυσική λίκνιση, που δεν είναι εύκολα παρατηρήσιμη, αφορά μικρού μεγέθους ταλαντώσεις της Σελήνης. Αποτέλεσμα του συνόλου των επιμέρους λικνίσεων της Σελήνης είναι ότι ενώ μόνο το ένα ημισφαίριο της αντικρίζει τη Γη, το ποσοστό της συνολικής επιφάνειας της Σελήνης που μπορούμε να παρατηρήσουμε, σε ένα μεγάλο χρονικό διάστημα παρατηρήσεων, φτάνει μέχρι το 59% (αλλά στιγμιαία, το ανώτερο όριο παραμένει στο 50%).

Αστρολογία

Στην αστρολογία η Σελήνη είναι κυβερνήτης του Καρκίνου.


Full Moon Luc Viatour.jpg
Η Σελήνη όπως φαίνεται από τη Γη
Τροχιακά χαρακτηριστικά
Μεγάλος ημιάξονας384.400 km
Εκκεντρότητα της τροχιάς0,0554
Περίγειο356.410 km
Απόγειο406.740 km
Αστρονομική τροχιακή περίοδος27,321 66155 d
(27 d 7 h 43.2 min)
Συνοδική Περίοδος29,530 588 d
(29 d 12 h 44.0 min)
Μέση Ταχύτητα Τροχιάς1,022 km/s
Μέγιστη Ταχύτητα Τροχιάς1,082 km/s
Ελάχιστη Ταχύτητα Τροχιάς0,968 km/s
Κλίση ως προς την Εκλειπτική5,1454°
Μήκος του αναβιβάζοντα συνδέσμου ???°
Όρισμα του περιηλίου ???°
Δορυφόρος τηςΓης
Φυσικά Χαρακτηριστικά
Διάμετρος στον Ισημερινό3.476,2 km
(0,273 της Γης)
Πολική διάμετρος3.472,0 km
(0,273 της Γης)
Μέση διάμετρος3.474,1 km
Πεπλάτυνση0,001 2
Ισημερινή περιφέρεια6.952,4 km
(0,273 της Γης)
Πολική περιφέρεια6.944,0 km
(0,273 της Γης)
Μέση περιφέρεια6.948,2 km
Επιφάνεια3.793×107 km²
(0.074 της Γης)
Όγκος2,1958×1010 km³
(0,020 της Γης)
Μάζα7.347 673×1022 kg
(0,0123 της Γης)
Πυκνότητα3.346 2 kg/cm³
Επιφανειακή Βαρύτητα στον Ισημερινό1.622 m/s²
(0.1654 g)
Ταχύτητα Διαφυγής2.38 km/s
Αστρονομική περίοδος περιστροφής27.321 661 d (συγχρόνως)
Ταχύτητα περιστροφής16.655 km/h
(στον ισημερινό)
Κλίση του Άξονα1.5424° με την εκλειπτική
Λευκαύγεια0.12
Επιφανειακή θερμοκρασία
- ελάχιστη
- μέση
- μέγιστη

40 K
250 K
396 K
Ατμοσφαιρική σύσταση
Επιφανειακή ατμοσφαιρική πίεση3×10−13kPa
Ήλιο25 %
Νέον25 %
Υδρογόνο23 %
Αργό20 %
Μεθάνιο
Αμμωνία
Διοξείδιο του Άνθρακα
ίχνη
+/

πηγή:https://el.wikipedia.org/wiki/%CE%A3%CE%B5%CE%BB%CE%AE%CE%BD%CE%B7